Toggle theme
Inkit wiki
用户工具
Toggle theme
登录
站点工具
搜索
工具
显示页面
过去修订
反向链接
最近更改
媒体管理器
网站地图
登录
>
最近更改
媒体管理器
网站地图
您在这里:
Wiki
»
统计
»
评价指标
stat:eulv
本页面只读。您可以查看源文件,但不能更改它。如果您觉得这是系统错误,请联系管理员。
====== 评价指标 ====== ML benchmarks [[https://github.com/szilard/benchm-ml]]\\ ===F1-score=== ===Youden Index=== ===AIC=== ===BIC=== =====回归评价===== [[https://blog.csdn.net/skullFang/article/details/79107127]]\\ ===均方误差(MSE)=== 用 真实值-预测值 然后平方之后求和平均。\\ <code> y_preditc=reg.predict(x_test) #reg是训练好的模型 mse_test=np.sum((y_preditc-y_test)**2)/len(y_test) #跟数学公式一样的 </code> ===均方根误差(RMSE)=== RMSE(Root Mean Squard Error)均方根误差。\\ <code> rmse_test=mse_test ** 0.5 </code> ===MAE(平均绝对误差) === <code> mae_test=np.sum(np.absolute(y_preditc-y_test))/len(y_test) </code> ===R Squared=== 分子是Residual Sum of Squares 分母是 Total Sum of Squares 分子就变成了我们的均方误差MSE,下面分母就变成了方差。 <code> 1- mean_squared_error(y_test,y_preditc)/ np.var(y_test) </code> ===sklearn=== <code> from sklearn.metrics import mean_squared_error #均方误差 from sklearn.metrics import mean_absolute_error #平方绝对误差 from sklearn.metrics import r2_score#R square #调用 mean_squared_error(y_test,y_predict) mean_absolute_error(y_test,y_predict) r2_score(y_test,y_predict) </code> ====不平衡数据==== [[https://www.kaggle.com/lct14558/imbalanced-data-why-you-should-not-use-roc-curve/notebook]]\\
stat/eulv.txt
· 最后更改: 2023/04/04 18:02 由
127.0.0.1
页面工具
显示页面
过去修订
反向链接
回到顶部